Bereichsbild
Emmy Noether-Nachwuchsgruppe

Emmy Noether Logo 180-186x109px

 
Contact

Heidelberg University
Institute of Earth Sciences
Im Neuenheimer Feld 234
69120 Heidelberg

Phone: +49 6221 54-5983
Fax: +49 6221 54-5503

 

Past Ocean Dynamics

Banner Data 1200x320px 2x

Data

The 231Pa/230Th circulation proxy is based on the idea of measuring the 231Pa and 230Th solely generated by the decay of dissolved 235U and 234U in the overlying water column (so called excess fraction). However, there are also fractions of 231Pa and 230 Th in the sediment not originating from the water column. There is a detrital and an authigenic fraction as well, which needs to be corrected for. The underlying assumptions for these corrections have been presented by Henderson and Anderson (2003), which have been later refined by Bourne et al. (2012).

Since the final 231Pa/230Th (excess) ratio is a result of these assumptions and calculations it is important to provide the raw data of isotopic concentrations from sediment samples. Only by doing so re-calculating the ratio based on new findings is possible. We thus provide here a (regularly updated) .txt-file for download containing the concentrations of 231Pa, 230Th, 238U,232Th, sample depth, age and references from all data generated by our working group in the last years comprising a (increasing) number of core locations with focus on the Atlantic Ocean.

 

  • Bourne, M., A. Thomas, C. Niocaill and G. Henderson (2012). "Improved determination of marine sedimentation rates using 230Thxs." Geochemistry Geophysics Geosystems 13(1): Q09017.
  • Henderson, G. and R. Anderson (2003). "The U-series toolbox for paleoceanography, Uranium Series Geochemistry." Reviews in Mineralogy and Geochemistry 128(52): 493-531.

Download Pa/Th Data compilation

Literature

Today the 231Pa/230Th circulation proxy is an invaluable tool, although measuring it is still a demanding analytical task (in particular 231Pa). Besides the usually extreme low quantities of 231Pa in any material another problem is the inexistence of any other long-living protactinium isotope (the most stable one is 233Pa with a half-live of 27 days). In the past measurements have been performed by counting its α-decay (and the β-decay of 233Pa) and by mass spectrometry. While ICP-MS has been emerged as the method of choice nowadays there have been also successful attempts by TIMS and even AMS.

However, reconstructing ocean circulation was not the first application of 231Pa and 230Th in marine science. Since the pioneering studies on the contents of 231Pa in sea-water and sediments in the sixties and seventies both radio-isotopes have been mostly used for the purposes of dating and assessing particle fluxes. In particular the work by Robert Anderson in the eighties was groundbreaking for understanding their cycling in the ocean. It was not before 1996, until 231Pa/230Th was used the first time in order to reconstruct ocean circulation by Ein-Fen Yu, Roger Francois and Michael Bacon. They examined the strength of the Atlantic Meridional Overturning (AMOC) during the Last Glacial Maximum (LGM). Underpinned by theoretical considerations in 2000 by Olivier Marchal, Roger Francois, Thomas Stocker and Fortunat Jost it took another eight years until the first high-resolution down-core profile of 231Pa/230Th was measured from the Atlantic Ocean and interpreted as a record of past AMOC strength (McManus et al. 2004).

Please find in the following a non-exhaustive list of publications dealing with 231Pa/230Th in paleoceanography and beyond. The items of this list span all aspects related to 231Pa/230Th and may provide a helpful introduction to this topic. Please don’t hesitate to inform me about publications I might have missed (E-Mail joerg.lippold@geow.uni-heidelberg.de). Thank you.

 

  • Sackett, W., 1960. Protactinium-231 Content of Ocean Water and Sediments. Science 132.
  • Turekian, K., Chan, L., 1971. The marine geochemistry of the uranium isotopes 230Th and 231Pa. Activation Analysis in Geochemistry and Cosmochemistry edited by A. O. Brunfelt and E. Steinnes,, 69-102.
  • Mangini, A., Sonntag, C., 1977. 231Pa dating of deep-sea cores via 227Th counting. Earth and Planetary Science Letters 37, 251.
  • Anderson, B., Bacon, M., Brewer, P., 1983a. Removal of 230Th and 231Pa at ocean margins. Earth and Planetary Science Letters 66, 73-90.
  • Anderson, R., Bacon, M., Brewer, P., 1983b. Removal of 230Th and 231Pa from the open ocean. Earth and Planetary Science Letters 62, 7-23.
  • Nozaki, Y., Nakanishi, T., 1985. 231Pa and 230Th profiles in the open ocean water column. Deep Sea Research Part A 32.
  • Anderson, R., Lao, Y., W. Broecker, Trumbore, S., Hofmann, H., Wolf, W., 1990. Boundary scavenging in the Pacific Ocean: A comparison of 10Be and 231Pa. Earth and Planetary Science Letters 96, 287-304.
  • Kumar, N., Gwiazda, R., Anderson, R., Froelich, P., 1993. 231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity. Nature 362, 45 - 48
  • Rutgers van der Loeff, M., Berger, G., 1993. Scavenging of 230Th and 231Pa near the Antarctic Polar Front in the South Antlantic. Deep-Sea Research II 40, 339-357.
  • Frank, M., Eckhardt, J.-D., Eisenhauer, A., Kubik, P.W., Dittrich-Hannen, B., Segl, M., Mangini, A., 1994. Beryllium 10, thorium 230, and protactinium 231 in Galapagos microplate sediments: implications of hydrothermal activity and paleoproductivity changes during the last 100 000 years. Paleoceanography 9 (4), 559-578.
  • Burnett, W.C., 1995. Separation of protactinium from geochemical materials via extraction chromatography. Radioactivity & Radiochemistry 6.
  • Scholten, J.C., Rutgers van der Loeff, M.M., Michel, A., 1995. Distribution of 230Th and 231Pa in the water column in relation to the ventilation of the deep Arctic basins. Deep Sea Research Part II: Topical Studies in Oceanography 42, 1519-1531.
  • Yu, E., Francois, R., Bacon, M., 1996. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689-694.
  • Edwards, 1997. Pa231 dating of carbonates by TIMS: implications for quaternary climate change. Science 276.
  • Walter, H.J., Loeff, M.M.R.v.d., Hoeltzen, H., 1997. Enhanced scavenging of 231Pa relative to 230Th in the South Atlantic south of the Polar Front: implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. Earth and Planetary Science Letters 149, 85-100.
  • Cheng, 1998. Uranium-Thorium-Protactinium dating systematics. Geochimica et Cosmochimica 62.
  • Edmonds, H., Moran, S.B., Hoff, J.A., Smith, J.N., Edwards, R.L., 1998. Protactinium-231 and Thorium-230 Abundances and High Scavenging Rates in the Western Arctic Ocean. Science 280, 405.
  • Walter, H.J., 1998. Scavening of 231Pa and 230Th in the South Atlantic: Implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. Berichte zu Polarforschung, AWI, Bremerhaven 282.
  • Asmus, T., Frank, M., Kochschmieder, C., Frank, N., Gersonde, R., Kuhn, G., Mangini, A., 1999. Variations of biogenic particle flux in the southern Atlantic section of the Subantarctic zone during the late Quaternary: Evidence from sedimentary 231Paex and 230Thex. Marine Geology 159, 63-78.
  • Bourdon, 1999. A method for 231Pa analysis by thermal ionization mass spectrometry in silicate rocks. Chem Geol 157, 147.
  • Fietzke, J., Bollhöfer, A., Frank, N., Mangini, A., 1999. Pa determination in manganese crust VA12/2 by TIMS. Nuclear Instruments and Methods in Physics Research B 149, 353-360.
  • Luo, S., Ku, T., 1999. Oceanic 231Pa/230Th ratio influenced by particle composition and reminmeralization. Earth and Planetary Science Letters 167, 183-195.
  • Frank, M., 2000. Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: multiproxy evidence and implications for glacial atmospheric CO2. Paleoceanography 15.
  • Marchal, O., Francois, R., Stocker, T., Joos, F., 2000. Ocean thermohaline circulation and sedimentary 231Pa/230Th ratio. Paleoceanography 15, 6.
  • Choi, M., Francois, R., Sims, K., Bacon, M.P., Brown-Leger, S., Fleer, A.P., Ball, L., Schneider, D., Pichat, S., 2001. Rapid determination of 230Th and 231Pa in seawater by desolvated micro-nebulization Inductively Coupled Plasma magnetic sector mass spectrometry. Marine Chemistry 76, 99-112.
  • Moran, S., Shen, C., Weinstein, S., Hettinger, L., Hoj, J., Edmonds, H., Edwards, R., 2001. Constraints on deep water age and particle flux in the Equatorial and South Atlantic Ocean based on seawater 231Pa and 230Th data. Geophysical Research Letters 28, 3437-3440.
  • Walter, H., Geibert, W., Loeff, M.M.R.v.d., Fischer, G., Bathmann, U., 2001. Shallow vs. deep-water scavenging of 231Pa and 230Th in radionuclide enriched waters of the Atlantic sector of the Southern Ocean. Deep-Sea Research I 48, 471-493.
  • Yu, E., 2001. Fluxes of 230Th and 231Pa to the deep sea: implications for the interpreatation of excess 230Th and 231Pa/230Th profiles in sediments. Earth and Planetary Science Letters 191, 219-230.
  • Chase, Z., Anderson, R., Fleisher, M., Kubik, P., 2002. The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean. Earth and Planetary Science Letters 204, 215-229.
  • Christl, M., Siegle, S., Strobl, C., Reuter, S., Mangini, A., 2002. Distribution and Sedimentary flux of 10Be, 230Th and 231Pa in the South Atlantic Ocean on a Glacial/Interglacial Timescale; a Multibox Model Approach. Geochimica Et Cosmochimica Acta 66 (15A), A141.
  • Guo, L., Chen, M., Gueguen, C., 2002. Control of Pa/Th ratio by particulate chemical composition in the ocean. Grophysical Research Letters 29, 1961.
  • Henderson, G., 2002. New oceanic proxies for paleoclimate. Earth and Planetary Science Letters 203, 1-13.
  • Moran, S.B., Shen, C.C., Edmonds, H.N., Weinstein, S.E., Smith, J.N., Edwards, R.L., 2002. Dissolved and particulate 231Pa and 230Th in the Atlantic Ocean: constraints on intermediate/deep water age, boundary scavenging, and 231Pa/230Th fractionation. Earth and Planetary Science Letters 203, 999-1014.
  • Morgenstern, 2002. Age Determination of Highly Enriched Uranium: Separation and Analysis of 231Pa. Analytical Chemistry 74, 5513.
  • Fleisher, M.Q., Anderson, R.F., 2003. Assessing the collection efficiency of Ross Sea sediment traps using 230Th and 231Pa. Deep Sea Research Part II: Topical Studies in Oceanography 50, 693-712.
  • Goldstein, S., C. Stirling, 2003. Techniques for Uranium series Nuclides: 1992-2002. Reviews in Mineralogy and Geochemistry 52, 23-57.
  • Henderson, G., Anderson, R., 2003. The U-series toolbox for paleoceanography, Uranium Series Geochemistry. Reviews in Mineralogy and Geochemistry 128, 493-531.
  • Luo, S., Ku, T., 2003. On the importance of opal, carbonate and lithogenic clays in scavenging and fractionating 230Th 231Pa and 10Be in the ocean. Earth and Planetary Science Letters 220, 201-211.
  • Shen, C., Cheng, H., Edwards, L., Moran, B., Edmonds, H., Hoff, J., Thomas, R., 2003. Measurement of Attogram Quantities of 231Pa in Dissolved and Particulate Fractions of Seawater by Isotope Dilution Thermal Ionization Mass Spectroscopy. Analytical Chemistry 75.
  • Chase, Z., Anderson, R., Fleisher, M., Kubik, P., 2004. Comment on "On the importance of opal, carbonate and lithogenic clays in scavenging and fractionating 230Th 231Pa and 10Be in the ocean". Earth and Planetary Science Letters 220.
  • Edmonds, 2004. 230Th and 231Pa in the Arctic Ocean: implications for particle fluxes and basin-scale Th/Pa fractionation. Earth and Planetary Science Letters 227.
  • Francois, R., Frank, M., Loeff, M.R.v.d., Bacon, M., 2004. 230Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19, PA1018.
  • Geibert, W., Usbeck, R., 2004. Adsorption of Th and Pa onto different particle types: experimental findings. Geochimica et Cosmochimica 68(7), 1489.
  • Luo, S., Ku, T., 2004. Reply to Comment on ‘‘On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa and 10Be in the ocean’’. Earth and Planetary Science Letters 220, 223-229.
  • McManus, J., Francois, R., Gherardi, J., Keigwin, L., Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate change. Nature 428, 834-837.
  • Pichat, S., Sims, K., Francois, R., McManus, J., Leger, S., Albarede, F., 2004. Lower export production during glacial periods in the equatorial Pacific derived from 231Pa/230Thxs,0 measurements in deep-sea sediments. Paleoceanography 19, PA4023.
  • Regelous, M., Turner, S., Elliot, T., Rostani, K., Hawkesworth, C., 2004. Measurement of fg quantities of Pa in silicate rock samples by Multicollector Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry 76, 3584-3589.
  • Gherardi, J., Labeyrie, L., McManus, J., Francois, R., Skinner, L., Cortijo, E., 2005. Evidence from NE Atlantic basin for variability in the rate of meridional overturning circulation through the last deglaciation. Earth and Planetary Science Letters 240.
  • Moran, S., Shen, C., Edwards, R., Edmonds, H., Scholten, J., Smith, J., Ku, T.-L., 2005. 231Pa and 230Th in surface sediments of the Arctic Ocean: Implications for 231Pa/230Th fractionation, boundary scavenging, and advective export. Earth and Planetary Science Letters 234.
  • Mortlock, R.A., Fairbanks, R.G., Chiu, T.C., Rubenstone, J., 2005. 230Th/234U/238U and 231Pa/235U ages from a single fossil coral fragment by Multi-collector Magnetic-sector Inductively Coupled Plasma Mass Spectrometry. Geochimica et Cosmochimica 69, 649-657.
  • Scholten, J., Fietzke, J., Mangini, A., Stoffers, P., Rixen, T., Gaye-Haake, B., Blanz, T., Ramaswamy, V., Sirocko, F., Schulz, H., Ittekkot, V., 2005. Radionuclide fluxes in the Arabian Sea: the role of particle composition. Earth and Planetary Science Letters 230, 319– 337.
  • Siddall, M., Henderson, G., Edwards, N., Frank, M., Müller, S., Stocker, T., Joos, F., 2005. 231Pa/230Th fractionation by ocean transport, biogenic particle flux and particle type. Earth and Planetary Science Letters 237, 135-155.
  • Xiaolong, H., Pinga, L., Baosonga, W., 2005. Evaluation of 233Pa decay data Applied Radiation and Isotopes 62.
  • Bradtmiller, L., Anderson, R., Fleisher, M., Burckle, L., 2006. Diatom productivity in the equatorial Pacific Ocean from the last glacial period to the present: A test of the silicic acid leakage hypothesis. Paleoceanography 21.
  • Hall, I., Moran, S., Zahn, R., Knutz, P., Shen, C., Edwards, R., 2006. Accelerated drawdown of meridional overturning in the late-glacial Atlantic triggered by transient pre-H event freshwater perturbation. Geophysical Research Letters 33, L16616.
  • Heinze, C., Gehlen, M., Land, C., 2006. On the potential of 230Th, 231Pa, and 10Be for marine rain ratio determinarions: A modeling study. Global Biogeochemical cycles 20.
  • Thomas, A., Henderson, G., Robinson, L., 2006. Interpretation of the 231Pa/230Th paleocirculation proxy: New water-column measurements from the southwest Indian Ocean. Earth and Planetary Science Letters 241 493– 504.
  • Bradtmiller, L., Anderson, R., Fleisher, M., Burckle, L., 2007. Opal burial in the equatorial Atlantic Ocean over the last 30 kyr: implications for glacial-interglacial changes in the ocean silicon cycle. Paleoceanography 22, PA4216.
  • Christl, M., Wacker, L., Lippold, J., Suter, M., 2007. Protactinium-231, a new radionuclide for AMS. Nuclear Instruments and Methods in Physics Research B 262, 379–384.
  • Francois, R., 2007. Paleoflux and paleocirculation from sediment 230Th and 231Pa/230Th, Proxies in Late Cenozoic Paleoceanography: Paleoflux and Paleocirculation from sediment 230Th and 231Pa/230Th. Elsevier, Amsterdam.
  • Lynch-Stieglitz, J., Adkins, J., Curry, W., Dokken, T., Hall, I., Herguera, J., Hirschi, J., Ivanova, E., Kissel, C., Marchal, O., Marchitto, T., McCave, I., McManus, J., Mulitza, S., Ninnemann, U., Peeters, F., Yu, E., Zahn, R., 2007. Atlantic Meridional Overturning Circulation During the Last Glacial Maximum. Science 316, 66-69.
  • Siddall, M., Stocker, T., Henderson, G., Joos, F., Frank, M., Edwards, N., Ritz, S., Müller, S., 2007. Modelling the relationship between 231Pa/230Th distribution in North Atlantic sediment and Atlantic meridional overturning circulation. Paleoceanography 22, PA2214.
  • Thomas, A., Henderson, G.M., McCave, I.N., 2007. Constant bottom water flow into the Indian Ocean for the past 140 ka indicated by sediment 231Pa/230Th ratios. Paleoceanography 22, PA4210.
  • Keigwin, D., Boyle, E., 2008. Did North Atlantic overturning halt 17,000 years ago? Paleoceanography 23, PA1101.
  • Kretschmer, S., W. Geibert, Schnabel, C., Loeff, M.R.v.d., Mollenhauer, G., 2008. Distribution of 230Th, 10Be and 231Pa in Sediment Particle Classes. Geochimica et Cosmochimica Acta 72.
  • Scholten, J., Fietzke, J., Mangini, A., Garbe-Schönberg, D., Eisenhauer, A., Stoffers, P., Schneider, R., 2008. Advection and Scavenging: Effect on 230Th and 231Pa distribution off Southwest-Africa. Earth and Planetary Science Letters 271, 159-169.
  • Dutay, J., Lacan, F., Roy-Barman, M., Bopp, L., 2009. Influence of particle size and type on 231Pa and 230Th simulation with a global coupled biogeochemical-ocean general circulation model: A first approach. Geochemistry Geophysics Geosystems 10.
  • Gherardi, J., Labeyrie, L., Nave, S., Francois, R., McManus, J., Cortijo, E., 2009. Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanography 24, PA2204.
  • Lippold, J., Grützner, J., Winter, D., Lahaye, Y., Mangini, A., Christl, M., 2009. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation? Geophysical Research Letters 36, L12601.
  • Negre, C., Thomas, A., Mas, J., Garcia-Orellana, J., Henderson, G., Masque, P., Zahn, R., 2009. Separation and Measurement of Pa, Th, and U Isotopes in Marine Sediments by Microwave-Assisted Digestion and Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry 81, 1914–1919.
  • Christl, M., Lippold, J., Hofmann, A., Wacker, L., Lahaye, Y., Synal, H., 2010. 231Pa/230Th: a proxy for upwelling off the coast of West Africa. Nuclear Instruments and Methods in Physics Research B 268, 1159–1162.
  • Gherardi, J., Luo, Y., Francois, R., McManus, J., Allen, S., Labeyrie, L., 2010. Reply to comment by S. Peacock on “Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region”. Paleoceanography 25, PA2207.
  • Guihou, A., Pichat, S., Nave, S., Govin, A., Labeyrie, L., Michel, E., Waelbroeck, C., 2010. Late slowdown of the Atlantic Meridional Overturning Circulation during the Last Glacial Inception: New constraints from sedimentary (231Pa/230Th). Earth and Planetary Science Letters 289, 520–529.
  • Luo, Y., Francois, R., Allen, S., 2010. Sediment 231Pa/230Th as a recorder of the rate of the Atlantic meridional overturning circulation: insights from a 2-D model. Ocean Science 6, 381-400.
  • Negre, C., Zahn, R., Thomas, A., Masque, P., Henderson, G., Martinez-Mendez, G., Hall, I., Mas, J., 2010. Reversed flow of Atlantic deepwater during the Last Glacial Maximum. Nature 468, 84 - 89.
  • Not, C., Hillaire-Marcel, C., 2010. Time constraints from 230Th and 231Pa data in late Quaternary, low sedimentation rate sequences from the Arctic Ocean: an example from the northern Mendeleev Ridge. Quaternaray Science Reviews 29, 3665-3675.
  • Peacock, S., 2010. Comment on “Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region” by J.M. Gherardi et al. Paleoceanography 25.
  • Burke, A., Marchal, O., Bradtmiller, L., McManus, J., François, R., 2011. Application of an inverse method to interpret 231Pa/230Th observations from marine sediments. Paleoceanography 26, PA1212.
  • Guihou, A., Pichat, S., Govin, A., Nave, S., Michel, E., Duplessy, J.-C., Telouk, P., Labeyrie, L., 2011. Enhanced Atlantic Meridional Overturning Circulation supports the Last Glacial Inception. Quaternary Science Reviews 30, 1576-1582.
  • Kretschmer, S., Geibert, W., Loeff, M.R.v.d., C.Schnabel, Xu, S., Mollenhauer, G., 2011. Fractionation of 230Th, 231Pa, and 10Be induced by particle size and composition within an opal-rich sediment of the Atlantic Southern Ocean. Geochimica et Cosmochimica Acta 75, 6971–6987.
  • Lippold, J., Gherardi, J., Luo, Y., 2011. Testing the 231Pa/230Th paleocirculation proxy - A data versus 2D model comparison. Geophysical Research Letters 38, L20603.
  • Anderson, R.F., Fleisher, M.Q., Robinson, L.F., Edwards, L., Hoff, J.A., Moran, S., Rutgers vd Loeff, M., Thomas, A., Roy-Barman, M., Francois, R., 2012. GEOTRACES Intercalibration of 230Th, 232Th, 231Pa and prospects for 10Be. Limnology and Oceanography: Methods 10, 179-213.
  • Auro, M., Robinson, L., Burke, A., Bradtmiller, L., Fleisher, M., Anderson, R., 2012. Improvements to 232-thorium, 230-thorium, and 231-protactinium analysis in seawater arising from GEOTRACES intercalibration. Limnol. Oceanogr.: Methods 10, 464–474.
  • Bourne, M., Thomas, A., Niocaill, C., Henderson, G., 2012. Improved determination of marine sedimentation rates using 230Thxs. Geochemistry Geophysics Geosystems 13, Q09017.
  • Lippold, J., Luo, Y., Francois, R., Allen, S., Gherardi, J., Pichat, S., Hickey, B., Schulz, H., 2012a. Strength and geometry of the glacial Atlantic Meridional Overturning Circulation. Nature Geoscience 5, 813-816.
  • Lippold, J., Mulitza, S., Mollenhauer, G., Weyer, S., Christl, M., 2012b. Boundary scavenging at the east Atlantic margin does not negate use of Pa/Th to trace Atlantic overturning. Earth and Planetary Science Letters 333–334, 317-331.
  • Okubo, A., Obata, H., Gamo, T., Yamada, M., 2012. 230Th and 232Th distributions in mid-latitudes of the North Pacifc Ocean: Effect of bottom scavenging. Earth and Planetary Science Letters 339, 139-150.
  • van Calsteren, P., Thomas, L., 2012. Quantitation of protactinium, 231Pa in abyssal carbonate. J. Anal. At. Spectrom 27.
  • Hayes, C., Anderson, R., Jaccard, S., François, R., Fleisher, M., Soon, M., Gersonde, R., 2013. A new perspective on boundary scavenging in the North Pacific Ocean. Earth and Planetary Science Letters 369–370, 86-97.
  • Hoffmann, S., McManus, J., Curry, W., Brown-Leger, L.S., 2013. Persistent export of 231Pa from the deep central Arctic Ocean over the past 35,000 years. Nature 497, 603-607.
  • Bradtmiller, L., McManus, J.F., Robinson, L.F., 2014. 231Pa/230Th evidence for a weakened but persistent Atlantic meridional overturning circulation during Heinrich Stadial 1. Nature Communications 5, 5817.
  • Deng, F., Thomas, A., Rijkenberg, M., Henderson, G., 2014. Controls on seawater 231Pa, 230Th and 232Th concentrations along the flow paths of deep waters in the Southwest Atlantic. Earth and Planetary Science Letters 390, 93-102.
  • Hayes, C., Anderson, R., Fleisher, M., Serno, S., Winckler, G., Gersonde, R., 2014. Biogeography in 231Pa/230Th ratios and a balanced 231Pa budget for the Pacific Ocean. Earth and Planetary Science Letters 391, 307-318.
  • Roberts, N., McManus, J., Piotrowski, A., McCave, N., 2014. Advection and scavenging controls of Pa/Th in the northern NE Atlantic. Paleoceanography 29, 668–679.
  • Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Andersen, M.B., Deininger, M., 2015. Strong and deep Atlantic Meridional Overturning Circulation during the last glacial cycle. Nature 517, 73-76.
  • Burckel, P., Waelbroeck, C., Gherardi, J.M., Pichat, S., Arz, H., Lippold, J., Dokken, T., Thil, F., 2015. Atlantic Ocean circulation changes preceded millennial tropical South America rainfall events during the last glacial. Geophysical Research Letters 42, 2014GL062512.
  • Dutay, J.C., Tagliabue, A., Kriest, I., van Hulten, M.M.P., 2015. Modelling the role of marine particle on large scale 231Pa, 230Th, Iron and Aluminium distributions. Progress in Oceanography 133, 66-72.
  • Hayes, C., Anderson, R.F., Fleisher, M.Q., Huang, K.-F., Robinson, L.F., Lu, Y., Cheng, H., Edwards, R.L., Moran, S.B., 2015a. 230Th and 231Pa on GEOTRACES GA03, the U.S. GEOTRACES North Atlantic transect, and implications for modern and paleoceanographic chemical fluxes. Deep Sea Research Part II: Topical Studies in Oceanography 116, 29-41.
  • Hayes, C., Anderson, R.F., Fleisher, M.Q., Vivancos, S.M., Lam, P.J., Ohnemus, D.C., Huang, K.-F., Robinson, L.F., Lu, Y., Cheng, H., Edwards, R.L., Moran, S.B., 2015b. Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean. Marine Chemistry 170, 49-60.
  • Jonkers, L., Zahn, R., Thomas, A., Henderson, G., Abouchami, W., François, R., Masque, P., Hall, I.R., Bickert, T., 2015. Deep circulation changes in the central South Atlantic during the past 145 kyrs reflected in a combined 231Pa/230Th, Neodymium isotope and benthic record. Earth and Planetary Science Letters 419, 14-21.
  • Luo, Y., Lippold, J., 2015. Controls on 231Pa and 230Th in the Arctic Ocean. Geophysical Research Letters 42, 5942-5949.
  • Burckel, P., Waelbroeck, C., Luo, Y., Roche, D., Pichat, S., Jaccard, S.L., Gherardi, J., Govin, A., Lippold, J., Thil, F., 2016. Changes in the geometry and strength of the Atlantic Meridional Overturning Circulation during the last glacial (20-50 ka). Clim. Past Discuss. 12, 2061–2075.
  • Henry, L.G., McManus, J.F., Curry, W.B., Roberts, N.L., Piotrowski, A.M., Keigwin, L.D., 2016. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science.
  • Lippold, J., Gutjahr, M., Blaser, P., Christner, E., Ferreira, M.-L.C., Mulitza, S., Christl, M., Wombacher, F., Böhm, E., Antz, B., Cartapanis, O., Vogel, H., Jaccard, S., 2016. Deep water provenance and dynamics of the (de)glacial Atlantic meridional overturning circulation. Earth and Planetary Science Letters 445, 68-78.
  • Rutgers van der Loeff, M., Venchiarutti, C., Stimac, I., van Ooijen, J., Huhn, O., Rohardt, G., Strass, V., 2016. Meridional circulation across the Antarctic Circumpolar Current serves as a double 231Pa and 230Th trap. Earth and Planetary Science Letters.
  • Turner, S., Kokfelt, T., Hoernle, K., Lundstrom, C., Hauff, F., 2016. 231Pa systematics in postglacial volcanic rocks from Iceland. Geochimica et Cosmochimica Acta 185, 129-140.
  • Lippold, J., Gutjahr, M., Blaser, P., Christner, E., de Carvalho Ferreira, M.L., Mulitza, S., Christl, M., Wombacher, F., Böhm, E., Antz, B., Cartapanis, O., Vogel, H., Jaccard, S.L., 2017. Corrigendum to “Deep water provenance and dynamics of the (de)glacial Atlantic meridional overturning circulation” [Earth Planet. Sci. Lett. 445 (2016) 68–78]. Earth and Planetary Science Letters 458, 444-448.
  • Lynch-Stieglitz, J., 2017. The Atlantic Meridional Overturning Circulation and Abrupt Climate Change. Annual Review of Marine Science 9, 83-104.
  • Rempfer, J., Stocker, T.F., Joos, F., Lippold, J., Jaccard, S.L., 2017. New insights into cycling of 231Pa and 230Th in the Atlantic Ocean. Earth and Planetary Science Letters 468, 27-37.
  • Mulitza, S., Cristiano M. Chiessi, Enno Schefuß, Jörg Lippold, David Wichmann, Benny Antz, Andreas Mackensen, André Paul, Matthias Prange, Kira Rehfeld, Martin Werner, Torsten Bickert, Norbert Frank, Jean Lynch-Stieglitz, Rodrigo C. Portilho-Ramos, André O. Sawakuchi, Michael Schulz, Tilmann Schwenk, Ralf Tiedemann, Maximilian Vahlenkamp, Zhang, Y., 2017. Synchronous and proportional deglacial changes in Atlantic Meridional Overturning and northeast Brazilian precipitation. Paleoceanography, 32:6, 622-633.
  • Voigt, I., A.P.S. Cruz, S. Mulitza, A. Mackensen, J. Lippold, B. Antz, M. Zabel, Y. Zhang, C.F. Barbosa, A.A. Tisserand 2017. Variability in mid-depth ventilation of the western Atlantic Ocean during the last deglaciation. Paleoceanography, accepted.

 

Editor: Email
Latest Revision: 2017-09-22
zum Seitenanfang/up